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Abstract. The relation between the factor systems of a group and the factor systems of an 
invariant subgroup is discussed both for PU and for PUA representations. The results are 
used to discuss the factor systems of a class of magnetic space groups. 

1. Introduction 

From the well-known results of Wigner and Bargmann it follows that the study of 
projective unitary (PU) and projective unitary-anti-unitary (PUA) representations of 
symmetry groups of physical systems is of great importance in physics. A natural 
consequence of dealing with PU and PUA representations is the study of their factor 
systems. 

In this paper we will give a decomposition of the factor systems of a group which 
possesses an invariant subgroup. Such a decomposition is useful for the determination 
of acomplete set of inequivalent factor systems, as we will show in §§ 4 and 5. For factor 
systems of PU representations, decompositions have been given previously for two 
special cases: by Mackey (1958, see pp 303-4 especially) for the case where the group is 
a semi-direct product and by Backhouse and Bradley (1972) for the case where the 
invariant subgroup is of prime order. Mackey’sresult will turn out to be a special case of 
our result. Bradley and Wallis (1974) gave a decomposition for the factor systems of 
PUA representations for the case where the subgroup is of index two and is rep- 
resented by unitary operators. Both the results of Backhouse and Bradley and those of 
Bradley and Wallis can easily be derived from our results. 

The plan of the paper is as follows: in 0 2 we give some mathematical preliminaries 
to fix the notation, the main theorems are presented in 0 3, and in §§ 4 and 5 we apply 
fie results to those magnetic space groups which are semi-direct products of a black and 
white lattice and a point group with unitary elements. 

2. Preliminaries 

kt G be a group and Go a subgroup of G of index 1 or 2. A PUA representation of G 
respect to Go is a mapping D from G into the operators on some Hilbert space 2 

Such that: 
(i) the operator D ( g )  is unitary if g E Go and anti-unitary if gk GO. 
6) D ( g ) D ( g ’ )  = (+(g, g’)D(gg’) for all g, g’ E G for some mapping v : G X G+ 

W). 
855 
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(ii) D(e)  = 1, where e is the identity of G and I is the identity operator on 
n e  mapping U satisfies 

u(g, e> = d e ,  g) = 1 VgE G (2.1) 

(2.2) 

and the asterisk denotes complex conjugation. 
A mapping U: GX G+ U(1) which satisfies equations (2.1) and (2.2) is ailed a 

factor system of G with respect to Go. In the following a factor system of G shall 
always mean a factor system of G with respect to GO. If D is a PUA representation of 
G with factor system U and c is a mapping from G into U(1) with c(e) = 1 then 
D'(g) = c(g)D(g) is a PUA representation of G with factor system 

dg12 g2) = rc(g,>cg"(g*>/c(gls2)~~(gt, g2). (2.4) 

Two factor systems U and U' of G are called equivalent if a mapping c : G +  U(1) with 
c(e) = 1 exists such that equation (2.4) holds. If Go is a subgroup of index 1, i.e. G = Go 
then D is a PU representation. 

Now suppose H is an invariant subgroup of G and K is the quotient group GIH. 
The elements of K are the cosets of G with respect to H. Elements of H will be denoted 
by a, b, c, . . I , and elements of K by a, 0, 7,. . . . Take for each coset a E K a 
representative ?(a), and let r ( E )  = e, if E is the unit element of K. Then each element of 
G can uniquely be written as (a, a) if we define 

(U, a) = ar(a). 

Let ua be defined by 

aa = r(cu)ar-'(cu) (2.6) 

and the mapping m : K x K +. H by 

r b ) r ( P )  = d a ,  P)r(aP). (2.7) 

From the associativity, it then follows 
(2.8) m(a, P M c u P ,  Y )  = m(a, PrIm"(P7 Y) 

and we also have 

(a")P = m(P, a)aP"m-'(P, a). (2.9) 

The multiplication of the elements of G is given by 

(a, P> = (ab"m(a, P I ,  UP) .  

In the following we shall write ha and A" for brevity if we mean 
respectively. 

and '"'" 
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For the case where GO is a subgroup of index 2 we have to distinguish two 

(i) fI5 Go. In this case K has a subgroup KO of index 2 such that (U, a) E Go if and 

(ii) H$ GO. Now H has a subgroup HO of index 2 which equals H n  Go. Further, 
each coset of G with respect to H contains both elements of Go and elements of G\Go. 
Therefore we may choose the coset representatives r(a) to belong to Go. 

In the following we assume such choice has been made. Then m(a, p)  E Ho for all 
@ , p c K  and (a, a )  E GO if and only if a EH.  

possibilities: 

only if a E KO. 

3. The main theorems 

Theorem 1 .  
Let 0' be a factor system of G. There exists an equivalent factor system o of G which 
decomposes as follows: 

4 a ,  a ) ,  (b, P ) )  = r(a, b")r(ab", m(a, P>)vab(a, P)P"(a, b )  (3.1) 
where y is a factor system of H with respect to Ho, v is a mapping from K x K into U( 1) 
and Pis a mapping from K X H into U( 1) with the following properties: 

Y(€, a) = v(a, E )  = 1 V a E K  (3.2) 
P(E, a) = P(a, e) = 1 (3.3) V a  E K, !fa E H 

(3.4) 
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If we multiply these two relations on the left with D-'((a, E ) )  and on the fight with 
D-'((e, p)) and combine them we obtain 

N e ,  4 ) N h  4)  
- - o"((a, 4, (b, PN 

o " ( ( a , ~ ) , ( b q ~ ) ) o * ( ( a b ~ ,  € 1 ,  (m(a ,  PI ,  c ) )ab( (e ,  a ) , (e ,p) )  

D W ,  E))D((e, 4. 
Since the numerical factor on the right-hand side depends on cy and b only we may 
denote it by P(a, b).  

be the restriction of o to H X  H. Then y is a factor system of H, and equation (3.1) has 
been proved. Equation (3.2) follows from the definition of v and equation (3.3) follows 
from equation (3.1) if we take a! = E ;  a = e and b = e ;  P = E respectively. Now from h e  
definition of a factor system we have 

@((a, 4 b ,  P))o((ab"m(a, PI,  Crp), 

Let the mapping v : K X IC+ U(1) be defined by v(a, P )  = a!), (e, p ) )  and let 

Y)) 
= o((a, a!), (bcBm(W y), Pr))o"'"'((b, PI ,  (c, TI). 

If we take P = E in this equation and use equation (3.1), the result is equation (3.4). In 
the same way equation (3.5) follows if we take a = b = e and y = E. Finally equation 
(3.6) follows if we take a = b = c = e. This proves the theorem. 

The opposite of the theorem above is also true: 

Theorem 2. 
Let y be a factor system of H with respect to No. Let v and P be mappings from K X K 
and K x H  respectively into U(1) such that the equations (3.2), (3.3), (3.4), (3.5) and 
(3.6) are satisfied. Then the mapping w : Gx G +  U(1) defined by equation (3.1) is a 
factor system of G. 

The proof of this theorem is a straightforward calculation and is therefore omitted. 

The question when two factor systems decomposed as in equation (3.1) are 
equivalent is answered by the following theorem. 

Theorem 3. 
A factor system o decomposed as in equation (3.1) is equivalent with the trivial factor 
system if and only if there exist mappings d :  H +  U(1) and e : K+ u(1) with 
d(e )  = e ( € )  = 1 such that y, P and v can be written as 

(3.7) 

(3.8) 

and 

(3.9) 



Factor systems of group and invariant subgroup 859 

ploof. 
is equivalent with the trivial factor system then there exists a mapping c : G + U(1), - 
c((e, E ) )  = 1 such that 

(3.10) 

Ifwedefine d and e by d(a) = c((a,  E ) )  and e(a)  = c((e, a)) then it followsfromequation 
(3.10) with b = e and a = E  

c((a, PN = d(a)e"(P). (3.11) 

Now the equations (3.7), (3.8) and (3.9) follow immediately from (3.10) and (3.11) by 
&g the appropriate elements equal to the unit element. 
On the other hand, if equations (3.7), (3.8) and (3.9) hold for some mappings 

d:H+ U(1) and e : K +  U(1) with d(e )  = e ( E )  = 1 and the mapping c :  G+ U(1) is 
defined by equation (3.11) then it is easily verified that equation (3.10) holds, which 
meam that U is equivalent with the trivial factor system. 

b. The factor systems of black and white lattices 

In this section we shall apply the decomposition given in the preceding section to 
derive the factor systems of the three-dimensional black and white lattices. Let To be a 
three-dimensional lattice and let al, a2 and a3 be basis translations for To. Suppose Tis 
ablack and white lattice for which To is the ordinary sublattice. Tis then determined by 
TO and an extra translation U with the property 2a E To. 

The inequivalent factor systems of To are obtained by Backhouse (1970) and are 
given by 

y(t, f ' )  = exp(-2?ritTAt') (4.1) 
where t stands for the translation t = tla, +t2az+ t3a3 and for the column vector with 
entries tl, f2 and t3 at the same time, tTis the transpose of t and A is a matrix of the form 

where p, r, s E [o, 1). 
The quotient group T/To equals C2, consisting of the elements E and a, with a' = E.  

We choose r(a) = a, so m(a,  a) = 2a For each factor system y of To we have to solve 
k f )  and v(a, a) from equations (3.4), (3.5) and (3.6) which now take the form 

Vt, t ' E  To (4.3) 

From equation (4.3) it follows that y2 must be equivalent to the trivial factor system of 
'0. %is restricts the possible values 'of p ,  r and s to 0 and f. From these eight 
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possibilities only two satisfy equation (4.4). One Of them is of course the 
system ( p  = r = s = 0) and the other is given in table 1. factor 

Table 1. 

For the two remaining factor systems y of TO we have y(t, t’) /y*(t ,  t’) = 1, SO h e  
solutions of equation (4.3) are just the one-dimensional unitary representations of To 
which are well known. For each solution P((u, t )  of equation (4.3) there are two 
solutions v(a, a) of equation (4.5). The inequivalent factor systems of T can now be 
derived with theorem 3 in a straightforward manner. It turns out that there are onlytwo 
inequivalent factor systems of T. A nontrivial one is given by the nontrivial y and 
P(a, t) = v(a, (U) = 1. 

5. Factor systems of a class of magnetic space groups 

As a second application let us consider a magnetic space group G which is the 
semi-direct product of a point group P and the invariant subgroup T of translations, 
which forms a black and white lattice, and let the nonmagnetic subgroup of G also be a 
semi-direct product. The point group P acts in the natural way on T and on the ordinary 
sublattice TO and leaves both T and To invariant. Of the 517 magnetic space groups 
which are based on black and white lattices, 110 are of this type. 

The problem now is to solve the equations (3.2)-(3.6) where H is the black and 
white lattice T and K is the point group P. The elements of P may now be chosen to be 
the coset representatives of G with respect to H. Equation (3.6) now tells us that 
factor system of P, and according to theorem 3 we can take this factor system to be r e d  
since every factor system of a point group is equivalent to a real factor system. 
Therefore v cancels from equation (3.5) and we only have to solve P(R, t )  from the 
equations 

and 
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&ere P1(R, f )  is a particular solution of equations (5.1) and (5.2) and P(R, t )  is the 
general solution of (5.2) and the equation 

P(R, t i  + r2) = P(R, tl)P"(R, t 2 )  Vt,, t 2  E T ,  VR E P. (5 -4) 

~esolutionsof equation (5.4) are just the one-dimensional UA representations of T. 
n e  reciprocal lattice T$ of To is spanned by bl ,  b2 and b3 where 

where j=(i+l)mod(3) and k =(i+2)mod (3). As is well known the one- 
dimensional unitary representations of T3 are given by Ak( t )  = eik' where k ranges 
mugh the first Brillouin zone of the reciprocal lattice: 

k = albl t (~2b2+(~3b3 where ai E [0,1). 

After a short calculation we find that the one-dimensional UA representations of T 
are labelled by a pair (k, z )  where z E U( 1) and k E A(a). A(a) denotes the set consisting 
of those four vectors k from the first Brillouin zone that have the properties that 2k is a 
reciprocal lattice vector and = 1. For instance if 2a = al then 

The one-dimensional UA representations of T are then given by 

The general solution of equation (5.4) is given by P(R, t ) = D k ( R ) , r ( R ) ( t ) .  The 
equations which k(R) and z ( R )  must satisfy if P(R, t )  satisfies equation (5.2)are 

~ ( K I R z )  = R;'k(Ri)+k(Rz)+g(Ri, Rz)  V R I , R 2 € P  (5.7) 

and 

VRI, R2c P. (5.8) W G ) =  z ( R ~ ) z ( R ~ )  e 

Here K is a reciprocal lattice vector which depends on R1 and RZ. Equation (5.7) is 
adogous to the equation derived by Backhouse (1 970) for the nonmagnetic symmor- 
Pbc space groups. In that case however k ranges through the whole first Brillouin zone, 
while here k is restricted to the four vectors in A(a), which makes equation (5.7) rather 
easy to solve. Only those solutions of equation (5.7) for which dR1 ,  Rz) = 
exp(ia. K(R1, R2)) is a trivial factor system of P have to be considered. For those 
solutions z (R)  must form a projective representation of P with factor system 

Rz) =exp(ia. [ K ( R I ,  R2)-k(R1, R2)+k(R1)+k(R2)]} .  This factor system is 
equivalent with cr. Note that k(R) . a = 0 if 24 is equal to a l ,  a2 or a3. 

Let us now turn our attention to the problem of finding a solution to equations (5.1) 
and (5.2). If y is the trivial factor system of T then of course Pl(R,  t )  = 1 solves 

(5.1) and (5.2). Therefore consider the case where y is the nontrivial factor 
system of T. 

'he factor system y R  of T defined by yR( t ,  t') = y(Rt,  Rt')y-'(f, t') is equivalent 
with the trivial factor system for each R E P, since T has only two inequivalent factor 
vtems. Therefore we can find a mapping cR : T +  U(1) with CR(f0 )  = 1 ( t o  is the unit 

ia[k(R,R,)-k(R,)-k(R,)-K(R,, R2)l 
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element of T )  and 

yR( t ,  t r )  = cR(~)c~(c~)/cR(c+ t) .  
cR is determined up to multiplication by a one-dimensional UA representation of 

Moreover CR,(R~~)CR~(~)CR~R~(~) is a UA representation Of T. Now it is easy to see that 
equations (5.1) and (5.2) have solutions if and only if the CR can be chosen such that 
cR,(R*c)cR~(~)cR~R~(~)= 1 forall t~ TandforallRI, R z E P .  Asolutionisthengivenby 
PI(R, t )  = cR'(C). 

Finally we have to apply theorem 3 in order to obtain the inequivalent factor 
systems. The factor systems obtained so far are given by (y,  v, P) where y is one of the 
two inequivalent factor systems of T, v belongs to a complete set of inequivalent red 
factor systems of P and P is a solution of equations (5.1) and (5.2). Let w and 0' bethe 
factor systems of G given by (y, v, P )  and ( y r ,  v', P') respectively. w and or can be 
equivalent only if y = y r  and Y = vr .  If this is the case then 

P(R, t)P'-'(R, t) = Dlro(~).zo(~)(f) 

for Some ko E A(a) and zo E U( 1). w and w'  are now equivalent if and only if there exists 
a kl in A(a) and a one-dimensional unitary representation d of P such that 

ko(R)=kl-R-'kl  + K  V R E P  (5.9) 

and 

z ~ ( R )  =&(RI eiRlroea VR E P. 

This shows how to obtain a complete set of inequivalent factor systems of G. 
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